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A semitheoretical approach for the ionization constant of water, Ky, is used to fit the
available experimental data over wide ranges of density and temperature. Statistical ther-
modynamics is employed to formulate a number of contributions to the standard state
chemical potential of the ionic hydration process. A sorption model is developed for
calculating the inner-shell term, which accounts for the ion—water interactions in the
immediate ion vicinity. A new analytical expression is derived using the Bragg—Williams
approximation that reproduces the dependence of a mean ion solvation number on the
solvent chemical potential. The proposed model was found to be correct at the zero-
density limit. The final formulation has a simple analytical form, includes seven adjust-
able parameters, and provides good fitting of the collected Ky, data, within experimental
uncertainties, for a temperature range of 0-800°C and densities of
0—12gem 3. © 2006 American Institute of Physics. [DOI: 10.1063/1.1928231]
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1. Introduction

The standard-state thermodynamic properties of aqueous
ions and molecules over wide ranges of temperature and den-
sity are required for modeling most of the physicochemical
processes in aqueous media related to a number of important
applications. The ionization constant of water (Ky) is a
benchmark property in aqueous solution chemistry and K
has been experimentally obtained over wide ranges of tem-
perature and pressure (see a brief review of published papers
below). In 1981, Marshall and Franck (M&F) proposed an
empirical equation for pKy, which was an empirical ap-
proach based on the available experimental measurements
(Marshall and Franck 1981). The M&F equation has a simple
analytical form and well represents the experimental data for
densities above 0.4 gcm ™. While the M&F equation, tech-
nically, allows an extrapolation below 0.4 gcm ™3, there is
some concern (Chen et al. 1994a) that the M&F formulation
may not give accurate values of Ky, at low densities.

Several attempts have been made for predicting the stan-
dard chemical potentials of aqueous electrolytes at condi-
tions other than ambient and most of the approaches have
employed the well-known Born (1920) equation for estimat-
ing the continuum dielectric polarization by an ion. An im-
provement of this approximation led to the so-called semi-
continuum models where the solvent in the region
neighboring the ion is treated as a medium with discrete
molecules, while the outside of this region is considered as a
dielectric continuum (see, for example, Fernandez-Prini
et al. 1992). The semicontinuum models have been success-
ful in a number of respects but cannot be used alone for
calculating the ionization constant of water over a wide
range of densities. In 1982, Pitzer made an attempt to calcu-
late the ionization constant of water at high temperatures and
low densities (Pitzer 1982). He regarded water vapor as a
near-perfect gas mixture of hydrates of different composi-
tions and used a reliable set of mass spectrometry data ob-
tained by Kebarle (1977) and Lau et al. (1982). It was found
that Ky values predicted by Pitzer decrease much faster than
that obtaned from the M&F equation at densities below
0.4 gcm™ 3, and the difference between M&F’s and Pitzer’s
calculations can be up to 10 orders of magnitude. Tanger and
Pitzer (1989a, b) extended the Pitzer’s approach to a region
of higher temperatures and densities to permit predictions up
to 1000 °C and 500 MPa. The revised semicontinuum model
of Tanger and Pitzer is a more realistic representation of both
the inner-shell and outer-shell contributions to the hydration
process. These authors concluded that their semicontinuum
model is more reliable than the M&F equation at pressures
and temperatures where the density of water is less than
0.4 gem 3.
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Klots (1984) derived an equation for calculating the pH
values of steam along the coexistence curve with liquid
phase using a rather different approach than that of Tanger
and Pitzer (1989a, b). Klots considered a distribution of ion—
water clusters in the framework of a liquid-drop model. The
author concluded that any extrapolation using the M&F
equation might overestimate the ionic content of vapor at
low temperatures and densities.

The paper of Tawa and Pratt (1995) should also be men-
tioned here as an example of the continuum approach. The
authors have applied a dielectric solvation model to predict
the equilibrium ionization of liquid water over wide ranges
of density and temperature. In addition, the model includes
an approximate description of the polarizability of dissoci-
ated water molecules. It was found that the calculated pKy
values are extremely sensitive to the water molecule radius,
which is an adjustable parameter and was used to fit the
experimental pKy, data.

In this paper, we present a new semitheoretical approach
to fit the available experimental data of pKy over wide
ranges of water density (from 0 to 1.2 gecm™?) and tempera-
ture (from 0 to 800 °C). Our model is based on a number of
novel achievements in statistical mechanics applied to dis-
crete molecular systems. It should be noted that our goal was
not to develop a model to theoretically predict the ionization
constant of water, but we derived a set of analytical expres-
sions for reproducing and extrapolating the available experi-
mental data to a region of low densities and high tempera-
tures taking into account that the ideal gas Ky .

2. Theory and Computations

2.1. Thermodynamic Consideration

The ionization constant of water can be attributed to the
following reaction: 2H,0<H;0" + OH ™. Because the pro-
ton hydration is completed under all conditions of practical
interest, we assume that this reaction may be used as a rep-
resentative model for both liquid and vapor phases up to the
zero density limit. The negative decimal logarithm of the
ionization constant, pKy, is defined as change of the stan-
dard Gibbs energy [AwG°(T,P)] divided by RT In(10):

—RTIn(10)pKw=RT InKw(T,P)=—AwG°(T,P)

=2uw(T,P)—2u,(T,P), (1)

where ,u:V( T,P) is the standard chemical potential of pure
water and ,ul (T,P) is the mean ionic standard chemical po-
tential of H;O™ and OH ™. Here and below we use the molal
scale standard state for the ionic species, if not stated other-
wise.

Generally, the chemical potential wy of a species X at a
certain particle density, py, can be represented as a sum of
the chemical potential of this species in the ideal gas state at
the same temperature and density, ,ug( T,px), and the re-
sidual chemical potential, ,LL];((T, px), as follows:

wx(Topx) = p(T.px) + ux(T,px). )

The ideal gas chemical potential ,u,g( T,px), can be calcu-
lated using the well-known statistical thermodynamic ap-
proach (Hill 1956)

p(T.px)=—RT In(qx/A3px)
= us(T)+ RT In(xxPY/ Py), (3)

where g is the intrinsic (vibrational) partition function, Ax
is the kinetic (translational and rotational) partition function,
xx is the mole fraction of the component X, and PO is the
total pressure for the gas-phase reference system. ,u,;(G( T) in
Eq. (3) is the gas-phase standard chemical potential, which
can be presented as:

sl (T)=—RT In(kTqx/A%Py), (4)

where P, is the standard pressure (0.1 MPa). It should be
noted that the residual part of the chemical potential of X at
density D (gcm™?) is easily available because of the simple
thermodynamic relation to the fugacity, fx (MPa):

wN(T,D)=—RTIn(DRT/Mfx). (5)

Introducing the terms that take into account the standard
state corrections (Ben-Naim 1987), we can obtain the follow-
ing expression for the water and ionic standard chemical po-
tentials as:

s T.D) = py (T, D)+ puy (T) + RT In(DRT/ My Py),
(6)

py(T.D)= uf(T,D)+ u;%(T)+RT In(DRT/M y,Py)
+RT In(Mw/10%), (7)

where D is the density of pure water, ,u;G(T) and ,uiVG(T)
are, respectively, the standard chemical potentials of ions and
water molecules in the ideal gas state. Using Egs. (6) and (7),
Eq. (1) can be rewritten in a form which is convenient for
representing the equilibrium constant of the ionization reac-
tion in the ideal gas phase, K\%(T) as:

RTInKw(T,D)=2 AuR(T,D)+RT InKG(T)
—2RT In(My/10%), (8)
where
ApR(T.D)=pu{(T.D)— uy(T.D) )

is the change of residual chemical potential of ion relative to
that of the water molecule.

2.2. Model

Using the available thermodynamic reference data, the
right-hand terms in Eq. (8) can be calculated except for the
residual part of the chemical potential, A ,uR( T,D). We as-
sume that A ,uR( T,D) can be considered as an average value
for both ions H;O" and OH™ and can be represented by
three main contributions as follows: (1) AuC is due to a
cavity formation, (2) AuS is due to short-range interactions
within the first solvation sphere of an ion together with the
interactions between molecules of the first solvation sphere
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18 A. V. BANDURA AND S. N. LVOV

and the neighboring molecules of the surrounding bulk sol-
vent, and (3) AuF is due to electrostatic polarization of water
beyond the solvation complex. Thus, A uR(7,D) can be writ-
ten as follows:

AuR(T,DY=AuS(T,D)+AuS(T,D)+Au5(T,D).
(10)

The hypothetical physical processes corresponding to each
contribution to A u®(T,D) are briefly described below.

We assume that in the first stage a cavity is created and it
is large enough for imbedding an ion together with the first
solvation sphere. Then, during the second stage, a certain
number (not constant) of water molecules is transferred from
the bulk water to the cavity. The short-range ion—water in-
teraction forces are simultaneously turned on without any
direct interaction between the ion and the outside cavity
fluid. At the same time, the structure and energy changes
should occur in the water molecules, which are closely
bound to the solvation complex. Finally, the third stage oc-
curs when the long-range polarization forces are taken into
account in an interaction between the complex and bulk sol-
vent. All of these processes are supposed to occur at the same
pressure and temperature. To ascribe the statistical—
thermodynamic relation to each contribution and to find the
semiempirical expressions for them we consider the grand
partition functions of the infinitely diluted solution (contain-
ing a single ion) and of the pure water. To provide the sym-
metry in equations to be derived, we also cut out (formally)
the spherical cavity in the case of the pure water which sur-
rounds a single fixed water molecule and contains the same
number of molecules (on average) as coordinated by the ion.
The representation of water molecules in pure fluid is the
main difference between the present model and our previous
consideration (Bandura and Lvov 2000). In accord with di-
viding the total space occupied by solution or bulk fluid we
suppose that the total grand partition functions can be repre-
sented as a product of partition functions of two separated
areas. Then, taking into account the fixed positions of the
central particles and assuming that their intrinsic partition
functions gy are the same as in ideal gas in both cases, we
can write:

P(Vs—VE)Na
RT

), (11)

where Hgc, Erc, Ecr, and E oy are, respectively, the grand
partition functions of the outside cavity fluids in solution and
in pure water, solvation complex, and water molecules inside
the cavity in pure water. The Vg and V. are the total volumes
of the solution and bulk fluid under the external pressure P,
80 N(Vg— Vp) is the difference between partial molar vol-
ume of ion and that of the water molecule (N, is Avogadro’s
number).
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2.2.1. Cavity Formation Energy

Equation (11) can be rewritten as follows:

—
=

=
— S

AuR= —RTln(:—C) +P(Vg— VF)NA—RTln( = .
- FC —~CW
(12)

The sum of the first two terms on the right-hand side of Eq.
(12) can be interpreted as the AuS+AuF. Indeed, in the
limit of the very large neutral cavities with the volumes V
and Vw we have:

—RTln(;—SC)+P(VS—VF)NA
~FC

=NAP[—(Vs— V) +(Ve=Vew) +(Vs— Vi) |
=NAP(Vo—Vew) =Au. (13)

In the presence of a charged ion in the cavity center, the free
energy A u of the electrostatic polarization of water beyond
the cavity must be added (see Sec. 2.2.3).

For estimating the cavity formation term we used the
Boublik—Mansoori—Carnahan—Starling—Leland (BMCSL)
expression (Lee 1988) that was obtained for hard-sphere flu-
ids. This contribution depends only on the fluid density and
radii of species

- n s
,LLC(T,D,VC)—RT[2 (- 77)3 +3 (1— 7])2
)
ST
(1=mn)
><1n(1—77)}, (14)

where 7= (4 7T/3)pr%\,, {=rc/ry, ry is the hard sphere ra-
dius of water molecule, r is the cavity radius, and p is the
number density of pure water, p=N,D/M+,. The contribu-
tion AuC in Eq. (10) can be calculated as a difference be-
tween the Gibbs energy of formation of the cavity around an
ion in solution and the cavity around a single water molecule
in the pure fluid:

ApS(T,D)=uT.D,rc) — uS(T.D,rew),  (15)

where r¢p and rcyw are the appropriate radii.

2.2.2. Solvation Contributions

The last term on the right-hand side of Eq. (12) can be
interpreted as AuS—solvation contribution to the residual
part of the chemical potential change:

ApsS=pui—py (16)
/.LISZ—RTII’I(ECI), (17)
pyw=—RTIn(Ecw). (18)

In the literature, there is no rigorous analytical expression
for the contribution that is responsible for the short-range
interactions between an ion and water molecules. Therefore,
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we will obtain a semiempirical equation for the short-range
solvation using a quasilattice approach and the Bragg-—
Williams approximation (Hill 1956). In this approach an ion
will be considered as a sorption center. By applying the
quasilattice approach and the Bragg—Williams approxima-
tion, we can present 2y as:

o3

i=0 l'(l’l

III

zexp( i’cw2n RT), (19)

where ¢ is the number of nearest neighbors of a molecule
within the first solvation shell, and w is the mean pair inter-
action energy per mole. It should be noted that w must be
positive for a solvation process. This is because the increase
of water molecules in the first solvation sphere of an ion
reduces the stepwise gain in the solvation Gibbs energy (Ke-
barle 1977). The quantity z depends on the water absolute
activity Ay, the mean ion—molecular interaction energy &y
(per mole), and v—the so-called free volume for water
molecule in the solvation complex. Assuming that the intrin-
sic partition function of a water molecule in the solvation
complex is the same as in pure water, we can write:

(ecitecg—RT Inve— pyy)
z=pexp — RT . (20)

The additional parameter &g in Eq. (20) takes into account
the interactions between molecule in the first solvation
sphere and the neighboring molecules of the surrounding
bulk solvent. It should be mentioned that all quantities in Eq.
(20) depend on the properties of pure water. In the limit of
low densities the quantity e should be on the order of
—100 kJ mol ! as was found by treating the gas-phase mass
spectrometry data (Kebarle 1977; Lau et al. 1982). The up-
per bound of vy can be roughly estimated as the volume of
one cell Vi/n.

An approximate evaluation of the sum in Eq. (19) in the
limit of large n gives (Hill 1956; Lopatkin 1983)

2

w
In(1—0)— =—=

ur=nRT 2RT|’

21

where w=cw, and € is the occupation fraction of an ion
solvation sphere. The value of 6 is connected to the mean
solvation number 77 by a relation: 7= 6n. The dependence of
0 on z is expressed by the well-known sorption isotherm
(Hill 1956; Lopatkin 1983):

=6(1—6) "exp(wb/RT). (22)

Employing Eq. (22), one can obtain another form of Eq. (21)
as:

RTﬁl‘9 1—6)In(1—4 v 23
+(1— -0+ ——|.
=n n_+(1=0)n(1-0)+ ). (23)
It is a surprising fact (as shown in the Appendix), that a
macroscopic approximation [Egs. (21)—(23)] reproduces an
exact result for n=6, which can be obtained by direct sum-
mation in Eq. (19). Unfortunately, Eq. (22) cannot be ana-
lytically solved with respect to 6. Nevertheless, an explicit

expression for 6#(z) would be useful. For this purpose we
have developed (see the Appendix) an approximate expres-
sion for # which correctly reproduces the dependence of 6
and d6/d1nz from z in the entire range of z from O to o for
sufficiently large and positive w (>5RT) as follows:

1 cosh[In(z)/2+1]

W/ RT+4 ™| cosh[In(z)/2— @/2RT—1]|°
(24)

It should be mentioned that at the point where z
=exp(w/2RT), Eq. (24) gives the exact value of 6=1/2. It
was also found that Eq. (23) together with Eq. (24) can cor-
rectly reproduce the limiting behavior of ,uls at Inz——oo(0
—0) and In z—+%(6—1). Because of these features of Eqgs.
(23) and (24), we used an analytical expression for ,u,IS ,
which can be obtained by substituting Eq. (24) into Eq. (23).
The resulting expression accurately reproduces both the ex-
act summation using Egs. (17) and (19) and the macroscopic
approximation given by Eq. (21). Note that, as shown in the
Appendix, these two approaches also give very close results.

Due to strong ion—water interactions in the solvation com-
plex, @ appears to be appreciably less than 1 only at low
densities. At high densities, where the experimental dissocia-
tion constants are available, @ is close to 1. In such a case Eq.
(23) turns into a more simple expression:

w;=—nRT(Inz— w/2RT). (25)

1
0=®(Z): E+

Therefore, Eq. (23) can be used for the correct extrapolation
of available experimental Ky data to the low density and
high temperature regions.

A simple adsorption model cannot be used for estimation
of ,LL%V in Eq. (18) because interactions of water molecules
within the cavity with the molecule in its center and between
themselves are the same as the water—water interactions in
the rest bulk fluid. However, taking into account the approxi-
mate nature of our equations, it is desirable to represent the 77
water molecules in the pure water (7= 6n) using the same
level of approximations as it was done for 7 water molecules
in the solvation complex. The simplest way to do this is to
replace the grand partition function =y in Eq. (18) by the
canonical partition function with the fixed number of water
molecules:

(ecw—RTIn pvcw— )
RT

on

ECW={eXp - ) . (26)
Here, as previously, we use the formal ‘““free-volume™ ap-
proach: the quantity ey is the mean interaction energy of
water molecules and vy is the free volume for water mol-
ecules within the regarded cavity. In the limit of low densi-
ties parameter v oy tends to 1/p, so the product pv ey is finite
and nonzero at all densities.

By using Egs. (23)-(25), an effective parameterization
scheme should be developed. Below is a description of the
empirical approach which was found to be sufficiently suc-
cessful. Note that the derived equations cannot be considered
as strict, and statistical mechanics was used to provide the
correct limiting behavior at low densities.

J. Phys. Chem. Ref. Data, Vol. 35, No. 1, 2006



20 A. V. BANDURA AND S. N. LVOV

We assume that quantities ec; and vy in Eq. (20) can be
regarded as the constant empirical parameters. Following an
assumption (Ono and Kondo 1960) we suppose that “‘sur-
face” contribution &g, in Eq. (20) should be proportional to

p?3 and can be expressed using a single empirical constant

Ocr:
ecp=4mroap™ T (27)
The factor 4 7r, takes into account an area of the boundary
surface between the bulk fluid and the cavity. Substituting
Eq. (27) into Eq. (20), we have
(eci= RT Invertdmrgoep™ T = py,)
RT

z=pexp| —
(28)

For the parameter w we have also adopted an inverse tem-
perature dependence as

w=wqT !, (29)

where w(y is the empirical constant.

It is known (Hill 1956; Lopatkin 1983) that the mean in-
teraction energy between water molecules in bulk fluid
should be proportional to density. We applied this assump-
tion to reproduce the terms in Eq. (26) and adopt the follow-
ing tree-parametric expression:

ecw— RTInpvcw=p"(@cw—RT cw), (30)

where ¢cw and Wiy are the empirical constants. It was
found that y=1/2 provides a good fit of the experimental
data. After these approximations, the final form of M%v in Eq.
(18) is as follows:

pw=n0lp"(oew—RT Yew) — uiy]- 31)

The last quantity that must be defined is the cavity size
formed in bulk fluid which obviously depends on density. As
it was stated above, this cavity contains a single central water
molecule together with 77 water molecules around it at the
bulk overall density. At a low fluid density the volume of this
cavity Vew can be approximated as (4/377er+ ilp). At a
high density the volume should be close to the cavity volume
V¢ in solution. The equation that we propose to use

4 0 0°

3
Vew=zmrew=n P

o

+ gw(rocw)3, (32)

approximately satisfies both conditions. Here roCw is the ra-
dius of the cavity in liquid water at reference condition (7,
=298.15 K and Py=0.1 MPa); and 6° and p° are, respec-
tively, the occupation fraction of the solvation complex and
density of water at reference condition. Note that 6° is sup-
posed to be close to unity.

2.2.3. Electrostatic Polarization Term

The third term on the right-hand side of Eq. (10) adopts an
analytical expression for the mixture of dipolar and ionic
hard spheres based on the mean spherical approximation
(MSA) (Garisto et al. 1983). This contribution depends on

J. Phys. Chem. Ref. Data, Vol. 35, No. 1, 2006
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the ionic charge ¢, relative permittivity of solvent ey, and

radius ry, (rx=dx/2) of the solute molecules. According to
Garisto et al. (1983)

2

E 1 1 q
,uI(T,D)=—E(1—a P (33)
where
A—rw[l— o0 } (34
1+4b
and b is defined by
ew=(1+4b¢)>(1+bo)*(1—2by) 5. (35)

2.3. Simplified Analytical Expression

Our final set of expressions includes Egs. (14)—(16), (23),
(24), (28), (29), and (31)—(35) which describe the residual
part contributions [Eq. (10)] of the standard ionic chemical
potential change A u®. We will refer this set of equations as
Model 1. In Fig. 1 we plot the density dependence of the
contributions A ,uc, A ,u,s, and A ,uE, which has been calcu-
lated for an isotherm of 400 °C using the obtained empirical
parameters (see below for details). As can be seen in Fig. 1,
all calculated contributions are negative. The solvation term
AuS, as expected, gives a dominant contribution, and a great
deal of its value (~90%) is gained when water density rises
from 0 to about 0.1 gcm 3. The cavity formation term is
also pronounced and its negative value is due to the fact that
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water molecules occupy more space in pure water than in the
solvation complex (rcw>>7cp). So, A may be attributed to
the water electrostriction that occurred around an ion. Be-
cause of the relatively large size of the solvation complex
(~4 A) the electrostatic contribution is the smallest part and
it varies slowly at D>0.4 gcm ™. This, in particular, means
that the Born (1920) equation may be used instead of the
MSA for evaluation of the electrostatic term. Assuming that
the solvation term is the most important contribution, and
other terms may be implicitly reproduced by empirical pa-
rameters, Eq. (8) can be rewritten in the following form:

2
— S _ .S G
My
+Zlgw. (36)

Further simplifications are possible if we suppose that w
can be set to zero in Egs. (21)—(23). In this case, the solva-
tion term [Egs. (20)—(23)] reduces to a simple Langmuir-like
equation:

uy=—nRTIn(1+z); z=pexp(—u/RT), (37)

where u (and possibly n) is the empirical function of density
and temperature. The bulk water contribution to Au’ also
can be expressed by a simple equation containing the empiri-
cal function v, which depends on density and temperature:
s z

Mmw=n0prv; 0=

e (38)

[see Eq. (31)]. It should be noted that functions # and v need
not include the residual chemical potential of pure water /.LVRV
due to mutual canceling of its contribution in ,uIS and M%v
Equations (36) and (37) may be used as a basis for the purely
empirical fit of the ionization constants of water and other
weak electrolytes.

In the present work we have applied the short form of
equations described previously to simplify the results ob-
tained by the entire set of equations of Model I. It was found
that the following simple equation:

VA
1g(1+2Z)= 5——D(By+ B T""

pKw(T,D)=—2n 1

My
+B2D) |+ pKW(T) +21g 551 (39)

Z=Dexp(ay+a, T '+ a, T 2D*?)

can accurately reproduce the observed Ky, data with preci-
sion corresponding to experimental errors.

Note that the temperature dependence of the ionization
constant pK \C,z,( T) in the ideal gas state is easily available and
will be considered below. Details of the fitting procedure and
discussion of the results will also be given in the next sec-
tions. From here and below we will refer to Eq. (39) as
Model II. Finally, we would like to show that the M&F equa-
tion (Marshall and Franck 1981)

—pKWEH(T,D)=A(T)+B(T)lgD, (40)
where
A(T)=Ag+A T '+ AT 2+A T3
and
B(T)=By+B,T '+B,T? (41)
can be rewritten in the following form:

—pKW(T.D)=—2N1g(1+De V) + pK3(T)

My

+ZIgW,

(42)

which exhibits the correct limiting behavior when density is
zero. We will call Eq. (42) the modified M&F equation. At a
large density we can neglect unity compared to z in Eq. (37).
In this case, combining Egs. (36) and (40) and removing (for
simplicity) the contribution of Mgv( T,D), we will have:

M
—2NlgD+ +p[<&,(T)+21g1—0V3v

2N
RT In(10)
=—A(T)—B(T)lgD. (43)
Assuming that N and U are functions of temperature only,
we can find that

1
N(T)=§B(T)

(44)

RTIn(10
_ RTIn10) A(T) +pKW(T) +2 lg 755 |-

B(T)
Substituting N and U from Eq. (44) to Eq. (42) we can
obtain modified form of M&F equation which coincides with

the original form at sufficiently large densities and has the
correct limit at z—0.

Uu(r)=

2.4. Fitting Procedure

Using Model I described above we have found that it is
convenient to fit the deviation of pKy from its standard
value pK&, taken at a reference temperature of 7
=298.15 K, pressure of P,=0.1 MPa, and density of D,
which can be calculated from the equation of state of water.
Therefore, Eq. (8) can be rewritten as follows:

T
pKw(T,D)=

0 0 R
T PKw Rrmcio) AR (T:D)

Ty
—AuR(Ty,Do)]+pKG(T)— ?PK\?/(TO)

+2

Ty My

1- 7) lg W . (45)
By using Model I, we need to estimate (besides the em-

pirical parameters): (1) the ideal gas ionization constant

KS\,( T) and (2) the value of the residual water chemical po-

tential ,u%,( T,D). We calculated the ideal gas ionization con-
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stant of water using JANAF98 data (Chase 1998) for the gas
phase formation constants lg K(X) (X=H;0", OH~,
H,0),

pKy(T)=21g K (H,0,T)—1g K (H;0".,T)
—lgK(HO™,T), (46)

and then we approximated its temperature dependence by the
function:

PKS(T)=0.61415+48251.337 ' —67707.93T >
+101021007 3. 47)

The empirical coefficients in Eq. (47) were obtained using
the least squares fitting procedure and the maximum error of
such an approximation is about 0.001 logarithmic units (1. u.)
at temperatures from O to 1000 °C.

A new formulation of thermodynamic properties of water
and steam (Harvey et al. 2000; Wagner and Prufl 2002) was
used for calculating the residual water chemical potential.
We have directly employed Eq. (5) for obtaining the
,u&,(T,D) values in Eq. (45).

Note that Model I provides the correct temperature depen-
dence of Kw(D,T) when D—0. However, the adopted fit-
ting procedure does not allow estimating the absolute value
of pKy at D=0. Therefore, the standard value, pKw(0,T),
has been included in Model I to ensure the correct limit at
zero density. The pKw(0,7,) value was calculated using
JANAF98 (Chase 1998) gas phase Gibbs energies of forma-
tion and was found to be 158.58, including the standard state
correction.

Our final expressions for Model I includes ten empirical
parameters (n, rvw, r'cy, rOCW, €crs Ucrs Ocrs Ocrs Pcow, and
cw) that are to be estimated using the available experimen-
tal data. To reduce the number of these parameters, we will
assume that the water molecule radius, 7y, can be presented
as rcp/3. This assumption looks reasonable if we take into
account that the effective sizes of H;O0" and OH™ ions are
close to that of the water molecule. The ion coordination
number n was chosen to be 6. The remaining eight empirical
parameters have been obtained using the nonlinear least
squares fitting procedure and employing a large array (237
points) of experimental data as described below. In the fitting
procedure we have taken into account the weights of all ex-
perimental points. Each weight was calculated as the inverse
square of the reported or estimated experimental error. The
standard deviation of the nonlinear least-square fitting was
found to be 0.16 1. u. The calculated empirical parameters are
given in Table 1. The obtained values of the cavity radii
rer=3.9 A, rocw=4.4 A, and the water molecule radius rv
=13 A, all look reasonable. Also, the value of gy was
found to be —70kImol !. This parameter represents the
mean linear increment of the gas phase solvation enthalpies
upon successive hydration of H;O" and OH™. Using the
gas-phase mass spectrometry data (Kebarle 1977; Lau et al.
1982), a value of about — 100 kJ mol ™' can be found and it
is quite close to the figure estimated above.
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TABLE 1. Empirical parameters calculated using Model I

No. Parameter Value Units*

1 n 6° —
2 For 3.93407 A
3 Few 4.39515 A
4 ecr —70.1901 kJ mol ™!
5 Ve 8.51597 A3
6 oo —26.4898 kI mol ' K
7 o 1479.20 kI mol™!' K
8 Pcw —18.8466 kJ mol ' A3?
9 ew 18.7534 A3

1 A=0.1 nm.

Value of n was taken as a constant in estimating the empirical parameters.

To apply Model II [Eq. (39)] at a fixed temperature and
density we need to know only seven empirical parameters: n,
ay, ay, as, By, Bi, By besides Eq. (47) for the ideal gas
ionization constant of water. For estimating these parameters,
we have used the same set of experimental data and gener-
ally the same adjusting procedure as was applied for Model
I. As previously, we set the ion coordination number n equal
to 6. The only difference in constructing Model II was that
we fit the values of pKy directly without reference to the
standard value, pKw(0,7). The obtained values of n, «,
ay, a,, By, By, and B,, are given in Table 2. The standard
deviation of the nonlinear least-square fitting was 0.16 1. u.,
which is the same as in Model 1. Moreover, the difference
between the two models was found to be very small and the
standard deviation of Model II from Model I was less than
0.05 1. u. Therefore, in most of the figures (except that show-
ing the experimental data deviations) we demonstrate the
results using Model II.

2.5. Choice of Experimental Data

Three main experimental techniques have been used for
measuring the ionization constant of water over wide ranges
of temperature and pressure: (1) conductivity, (2) potentiom-
etry, and (3) calorimetry.

2.5.1. Conductivity

Measurement of the electrical conductivity is one of the
most convenient methods for determining the dissociation/
association constants of aqueous electrolytes. By obtaining
the conductances of a series of dilute solutions of a weak

TABLE 2. Empirical parameters calculated using Model II

No. Parameter Value Units
1 n 6* —
2 @, —0.864671 —
3 a, 8659.19 K
4 a, —22786.2 (gem )" K?
5 Bo 0.642044 (gem™ 7!
6 B —56.8534 (gem ) 7TK
7 B —0.375754 (gem )72

“Value of n was taken as a constant in estimating the empirical parameters.
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acid (or base) and its salt, the ionization constant of water
can be obtained. Historically, the high-temperature conduc-
tivity studies were initiated by Noyes et al. (1910). The au-
thors were able to achieve a relatively high accuracy compa-
rable to that which can be obtained in modern observations.
However, the extrapolation method, used in that study for
obtaining the limiting values, was different and is not suit-
able at the present time. Because of a significant difference
in the data treatment, we did not include the data of Noyes
et al. (1910) in the fitting procedure. Fortunately, most of the
latest works were based on relatively modern solution theo-
ries (Robinson and Stokes 1965). For example, the Shed-
lovsky equation and its modifications were extensively used
to obtain the limiting conductance. The Debye—Huckel
theory was also applied to calculate the activity coefficients.
Since the early 1960s, Quist and Marshall have carried out
extensive conductivity measurements for a variety of aque-
ous electrolyte solutions, mostly at temperatures from 400 to
800°C and pressures up to 400 MPa (Quist and Marshall
1968). Quist (1970) measured the electrical conductance of
aqueous NH,Br in the supercritical region and accomplished
the investigations that allowed estimating Kv . The conduc-
tivity data of NH,Br solutions were combined with results
previously obtained for HBr, KBr, NaBr, and NH; solutions,
to obtain values for the ionization constant of water up to
800 °C and 400 MPa. It turns out that Marshall and Franck
significantly used the Ky data obtained by Quist (1970) in
their fitting procedure. However, as pointed out by Mesmer
et al. (1991), the accuracy of these data were limited by the
need to use the equilibrium constants that were not available
and had to be estimated. Indeed, Quist (1970) made two
extrathermodynamic assumptions: (1) the conductance of un-
hydrolyzed NH,Br can be set equal to the measured value
for KBr at the same ionic strength, and (2) the ionization
constant of NH,Br can be assumed to be equal to the corre-
sponding values for NaBr. As a result, the uncertainty of
Quist’s results may be larger than that reported in his paper
(0.5 1. u.). In the 1970s Lukashov et al. (1975) studied the
conductivity of solutions of KCI, LiCl, NaOH, KOH, and
HCI in water and steam at very low densities from 0.085 to
0.70 gcm ™3, and temperatures and pressures corresponding
to the liquid—vapor coexisting state. Those data were used by
Svistunov et al. (1977) for estimating the ionization constant
of water at densities between 0.08 and 0.22 gcm73. Also,
Svistunov ef al. (1978) experimentally obtained some addi-
tional data close to the critical point of water. The investiga-
tions of Lukashov et al. (1975) and Svistunov et al. (1978)
are the only data, besides those of Quist (1970), that provide
information about the pKy at low densities and we have
included the data of Svistunov et al. (1977, 1978) in our
fitting procedure.

Conductance measurements have also been carried out in
other extreme regions, namely at very high pressures and
temperatures. Holzapfel and Franck (1966) measured the
specific conductance of water up to 1000°C and 10000
MPa. A shock wave technique used by Hamann and Linton
(1969) to measure the conductance of KCl, KOH, and HCI

aqueous solutions allowed the authors to attain a pressure of
about 13 000 MPa. We have not used the superhigh pressure
data in this work due to a possible large experimental uncer-
tainty of the shock wave technique.

More recently, an improved experimental technique and
data treatment in the conductivity measurements were em-
ployed for obtaining Ky, along the water—vapor coexisting
curve. Bignold er al. (1971) published the conductance data
obtained in the saturation region of pure water. Fisher and
Barnes (1972) determined pKy values using the limiting
conductances and the ion association constants of aqueous
solutions of NH,OH, HAc, and NH,Ac at temperatures from
100 to 350 °C.

2.5.2. Potentiometry

In spite of significant progress achieved at the present
time, it is sill not easy to obtain the limiting ionic conduc-
tances and ion association constants using the conductivity
measurements in supercritical water. In general, an uncer-
tainty of about 0.1-0.5 L. u. in pKy may be ascribed to those
values. On the other hand, potentiometry is one of the most
precise techniques that can be used to obtain the ionization
constant of water. Harned and Robinson (1940) used the po-
tentiometric method in their classical works to measure Kyy .
Up to now, their results are the most precise data obtained at
temperatures below 100 °C. Many investigators have used
those data as a reliable reference in the low temperature re-
gion and we employ these data in the same way.

At high temperatures, the hydrogen electrode concentra-
tion cell was proven to be the best technique for accurate
measurements of Ky, . The most accurate determination of
Ky at elevated temperatures appears to be the potentiometric
study of Sweeton ef al. (1974). For the vapor-liquid coex-
isting region we took into account the experimental data of
Sweeton ef al. (1974), Percovets and Kryukov (1969), Mac-
donald et al. (1973), and Palmer and Drummond (1988).
However, in this region of the water phase diagram we did
not take into account the data of Dobson and Thirsk (1971)
because their values significantly deviated (about 0.1 1. u.)
from the data of all other authors.

The potentiometric measurements were also found to be
very effective at high pressures and low temperatures. Using
this technique, Hamann (1963) and then Whitfield (1972)
determined pKy at ambient temperatures and high pressures
up to 200 MPa. Linov and Kryukov (1972), and Kryukov
et al. (1980) studied the ionization constant of water up to
800 MPa at temperatures between 18 and 150 °C. All of the
papers mentioned above have been taken into account in this
work and the experimental data presented in these articles
were used in the fitting procedure.

2.5.3. Calorimetry

Calorimetry has been demonstrated as a useful technique
for studying the chemical equilibria in aqueous solutions
over a wide range of temperatures. An adiabatic calorimeter
was used by Ackermann (1958) at temperatures up to 130 °C
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TaBLE 3. References on the experimentally obtained Ky, data used for estimating the empirical parameters given in Tables 1 and 2

Mean/maximum

Number Reported or deviation from
of Ranges of temperature, pressure, and estimated error calculated by Eq.
No.* Reference points® density Method® inlg Ky (1. u.) (39) values (1. u.)
1 Harned and Robinson (1940) 13 sat. curve, t<<60 °C Pot. 0.001 0.0015/0.0034
2 Ackermann (1958) 7 sat. curve, t<<130°C Cal. 0.005 0.013/0.060
3% Hamann (1963) 8 t=25°C, P<200 MPa Pot. 0.01-0.03 0.0033/0.0083
4 Percovets and Kryukov (1969) 6 sat. curve, t<<150°C Pot. 0.02 0.019/0.038
5% Quist (1970) 31 1=300-800°C, p=0.45-1.0gcm™> Cond. 0.3-0.5 0.33/0.82
6 Bignold et al. (1971) 24 sat. curve, 1<271°C Cond. 0.008-0.40 0.018/0.071
7 Fisher and Barnes (1972) 3 sat. curve, t>250°C Cond. 0.2 0.32/0.50
8% Whitfield (1972) 40 t=5-35°C, P<200 MPa Pot. 0.005-0.015 0.0034/0.015
9% Linov and Kryukov (1972) 32 t=18-75°C, P<800 MPa Pot. 0.02-0.03 0.055/0.13
10 Macdonald et al. (1973) 8 sat. curve, 1<<250 °C Pot. 0.01-0.03 0.019/0.050
11* Sweeton et al. (1974) 7 sat. curve, 1<250°C Pot. 0.01 0.0065/0.012
sat. curve, t=250°C 0.02-0.05 0.023/0.038
12 Svistunov et al. (1977) 4 t=330-370°C, p=0.08-0.2 gcm > Cond. 0.5-1.0 0.33/0.66
13 Svistunov et al. (1978) 12 sat. curve, 1=300-340°C Cond. 0.1-0.2 0.074/0.14
t=395°C 0.2-0.4 0.10/0.15
14 Kryukov et al. (1980) 31 t=25-150°C, P<600 MPa Pot. 0.01-0.04 0.013/0.040
15 Palmer and Drummond (1988) 6 sat. curve, <250 °C Pot. 0.01 0.014/0.025
16 Chen et al. (1994a,b) 5 sat. curve, 1>250°C Cal. 0.02-0.1 0.077/0.23

Data taken into account by Marshall and Franck (1981) are marked by the asterisk.

"Number of experimental points taken into account in the fitting procedure.

“Cond.= conductivity measurements, Pot.= potentiometry measurements, Cal.= calorimetry measurements.

for measuring the apparent molal heat capacities of aqueous
solutions of NaCl, NaOH, and HCIl. The water ionization
constant was calculated by integrating the obtained experi-
mental data. Precision of the obtained values seems to be
comparable to that of the potentiometric studies of Harned
and Robinson (1940). Therefore, we included these data in
our treatment. Significant improvement of high-temperature
solution calorimetry was made in 1980 after developing the
flow calorimeter. The high temperature calorimetric data, ob-
tained by Chen et al. (1994b), were used in this work. The
Ky values of Chen e al. (1994b) were derived using the
enthalpies of reaction between NaOH(aq) and HCl(aq). The
measurements were carried out at temperatures between 250
and 350 °C along the liquid—vapor saturation curve.

In conclusion, Table 3 consists of the references that were
taken into account in this work. Only the original experimen-
tal data were considered for the fitting procedure. The data
taken into account by Marshall and Franck (1981) are
marked by the asterisk. The mean and maximum deviations
of the data from the results of calculations are also given in
Table 3. In Fig. 2, we show the data distribution over ranges
of temperature and density studied. The collected data cover
the region of temperatures from 0 to 800 °C, densities from
0.1 to 1.2 gecm™ 3, and pressures from ambient to 800 MPa.
The open circles in Fig. 2 represent the data of Holzapfel and
Franck (1966) and Hamann and Linton (1969), that were not
included in the fitting procedure because of some uncertain-
ties in their experimental procedure.

3. Results and Discussion

The values of pKy, calculated over a wide range of tem-
perature (0—1000°C) and pressure (0.1-1000 MPa) using
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Eq. (39) are tabulated in Table 4. The differences between
calculated and experimental values of pKy are compared in
Figs. 3 and 4 at low and high densities, respectively, for both
Model I [Eq. (45)] and Model II [Eq. (39)], and they were
found to be compatible with the corresponding experimental
errors (see Table 3). At the liquid-phase region and moderate
temperature and pressure (7<<200 °C, P<<200 MPa) the de-
viations of the experimental data from values calculated by
Eq. (39) do not generally exceed 0.05 1. u. (except the data of
Fisher and Barnes 1972). Most of the other available experi-
mental data do not differ from those predicted by our equa-
tions by more than the standard deviation obtained 0.16 1. u.
with the exception of the data of Quist (1970) and Svistunov
et al. (1977). The significant deviations (up to 0.8 1. u.) in the
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FiG. 2. Temperature—density distribution of the available experimental Ky,
data: (@) selected points, (O) rejected points.
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TABLE 4. Negative logarithm (base 10) of the ionization constant of water, Ky, calculated using Model II [Eq. (39)]
Temperature (°C)
Pressure (MPa) 0 25 50 75 100 150 200 250 300
0.1 MPa or 14.95 13.99 13.26 12.70 12.25 11.64 11.31 11.20 11.34
saturated
pressure®
25 14.85 13.91 13.18 12.61 12.17 11.54 11.19 11.05 11.12
50 14.75 13.82 13.10 12.53 12.08 11.45 11.08 10.90 10.89
75 14.66 13.74 13.03 12.46 12.01 11.36 10.97 10.77 10.71
100 14.58 13.67 12.95 12.39 11.93 11.28 10.88 10.65 10.57
150 14.42 13.52 12.82 12.25 11.79 11.13 10.71 10.46 10.33
200 14.28 13.39 12.69 12.12 11.67 11.00 10.56 10.29 10.13
250 14.14 13.27 12.57 12.00 11.55 10.88 10.43 10.14 9.96
300 14.02 13.15 12.45 11.89 11.44 10.76 10.31 10.01 9.81
350 1391 13.04 12.35 11.79 11.33 10.65 10.19 9.88 9.68
400 13.80 12.93 12.24 11.69 11.23 10.55 10.08 9.77 9.55
500 13.59 12.74 12.05 11.50 11.04 10.36 9.88 9.56 9.33
600 13.41 12.56 11.87 11.32 10.87 10.18 9.70 9.37 9.13
700 13.24 12.39 11.71 11.16 10.71 10.02 9.54 9.20 8.96
800 13.08 12.23 11.56 11.01 10.55 9.86 9.38 9.04 8.79
900 12.93 12.09 11.41 10.86 10.41 9.72 9.24 8.89 8.64
1000 12.79 11.95 11.27 10.72 10.27 9.58 9.10 8.75 8.49
Temperature (°C)
350 400 450 500 600 700 800 900 1000
0.1 MPa or 11.92 — — — — — — — —
saturated
pressure®
25 11.55 16.57 18.13 18.76 19.43 19.83 20.11 20.31 20.41
50 11.08 11.56 12.71 14.20 15.62 16.28 16.69 16.98 17.18
75 10.80 11.05 11.49 12.16 13.51 14.30 14.79 15.13 15.37
100 10.60 10.74 11.00 11.38 12.30 13.04 13.54 13.90 14.16
150 10.30 10.34 10.46 10.64 11.12 11.61 12.03 12.36 12.61
200 10.06 10.06 10.12 10.22 10.51 10.85 11.17 11.44 11.66
250 9.87 9.84 9.86 9.92 10.11 10.36 10.61 10.83 11.02
300 9.70 9.65 9.65 9.68 9.81 10.00 10.20 10.39 10.55
350 9.55 9.49 9.46 9.48 9.57 9.71 9.88 10.04 10.18
400 9.42 9.34 9.31 9.30 9.36 9.48 9.61 9.75 9.88
500 9.18 9.09 9.03 9.01 9.02 9.09 9.19 9.30 9.40
600 8.97 8.87 8.80 8.76 8.75 8.79 8.86 8.94 9.03
700 8.79 8.67 8.59 8.55 8.51 8.54 8.59 8.65 8.72
800 8.62 8.49 8.41 8.35 8.31 8.31 8.35 8.41 8.47
900 8.46 8.33 8.24 8.18 8.12 8.12 8.14 8.19 8.24
1000 8.31 8.18 8.08 8.02 7.95 7.94 7.96 7.99 8.04

0.1 MPa at <100 °C, and saturation pressure for #>100 °C.

low density and supercritical regions may be due to large
experimental errors at these state parameters. Nevertheless,
our formulation satisfactorily fits the low density data of
Svistunov et al. (1977) for D<0.4 gcm_3, while the M&F
equation does not, and the calculated values may differ from
experimental data up to 4 1. u. in this region. The standard
deviation of the collected experimental data from that calcu-
lated using the M&F equation is 0.49 1. u., that is three times
larger than the deviation from Eq. (39) (0.16 1. u.). Note that
the largest contribution to the deviations between the M&F
and observed data give the low-density data of Svistunov
et al. (1977). Tt is also interesting to note that in spite of the
fact that we did not used the high-pressure values, Eq. (3.9)
reproduces the data of Holzapfel and Franck (1966) up to
10000 MPa 1.5 g c¢cm >, and the data of Hamann and Linton

(1969) up to 13000 MPa 1.7 gecm ™3 within 1.5 1. u. This fact
demonstrates a significant predictive capability of our equa-
tion due to a theoretical background that was used in our
approach.

Analysis of the fitting results at the saturated vapor pres-
sure is shown in Fig. 5. When D>0.8 gcm™? the deviation
of our data from those of Sweeton et al. (1974) is generally
less than 0.01 1. u. Also, our results are practically coincident
with those of Marshall and Franck at the saturation curve up
to 275°C (Fig. 5) using both Models I and II. However, at
temperatures above 275°C, the difference between M&F
and Eq. (39) is pronounced and can be as much as 0.4 1. u. at
a temperature of 350 °C.

An isochoric plot of pKy, as a function of inverse tem-
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Fig. 3. Deviation of calculated lg Ky, values from experimental data in
supercritical and low-density regions at 0.08<D<1.00 gcm >: (O) Quist
(1970), (A) Svistunov et al. (1977), and (V) Svistunov et al. (1978). De-
viation from Model I are shown by filled symbols and deviation from Model
II are shown by open symbols.

perature (1/7"), was calculated using Model II and the M&F
equation for densities of 1.0, 0.7, 0.4, and 0.4 gcm_3 and is
shown in Fig. 6. All graphs are close to a straight line over a
wide temperature range. In the first case (D=1.0 gcm ?)
our calculations almost completely coincide with the M&F’s
result. However, the difference between our approach and
M&F’s model becomes more pronounced if density de-
creases and reaches 4 1. u. at 0.1 gcm™°.

In Fig. 7 we compare the density dependence of pKyy, cal-
culated using our model (Models I and II are indistinguish-
able in figure scale) and the M&F equation at 400 and
800 °C. From this figure we can see that a significant devia-
tion between two formulations begins to occur at a density of
0.6 gcm 3. In Fig. 8 we present the same density depen-
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FIG. 4. Deviation of calculated 1g Ky, values from the experimental data in
high-density region at 1.0<D<1.2 gcm™3: (O) Whitfield (1972), (0) Ha-
mann (1963), (A) Linov and Kryukov (1972), (V) Kryukov et al. (1980).
Deviation from Model I are shown by filled symbols and from Model II—by
open symbols. For better appearance the Hamann’s deviations are given
only for Model I, and Whitfield’s—only for Model II.
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FiG. 5. Temperature dependence of 1g Ky, at the saturated vapor pressure for
T=200°C: (- * - ) Marshall and Franck (1981), ( ) Model II [Eq.
(39)]. High temperature experimental data: (A) Bignold et al. (1971), (O)
Fisher and Barnes (1972), (@) Sweeton et al. (1974), (V) Svistunov et al.
(1978), (O) Palmer and Drummond (1988), ((J) Chen er al. (1994a, b).

dence in logarithmic scale to show the limiting behavior of
the regarded models. Additionally, in this figure we plot (at
400°C) the calculated values using M&F Eq. (40) and the
modified M&F Eq. (42) in which the zero-density limit is
correct. The calculated data from the modified M&F Eq. (42)
are higher (in absolute values) than our data carried out using
Eq. (39). The fact that the M&F equation overestimates the

24

22+

20+

K

-log

1000/T, K!

FIG. 6. Temperature dependence of 1g Ky at a constant density: (+ - - )
Marshall and Franck (1981), ( ) Model II [Eq. (39)]. Curves from bot-
tom to top correspond to densities as follows: 1.0, 0.7, 0.4, and 0.1 g cm ™.
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FiG. 7. Density dependence of 1g K at 400 °C (upper curves) and 800 °C
(lower curves): (- - - ) Marshall and Franck (1981), ( ) Model 11 [Eq.
(39)].

absolute values of pKy at low densities has been reported
elsewhere (Chen er al. 1994a), and we confirm the conclu-
sion made in this paper based on the results of our study.
Indeed, the agreement between pKy, of Sweeton ef al. (1974)
and those calculated using the M&F equation is excellent
only up to about 250 °C, but as temperature increases, the

-log X,

s +—r——r¥FF7——T7—
7 8 5 4 3 2 - 0

log (D/gem™)

FiG. 8. Dependence of lg Ky from Ig(D/gcm™3) at 400 and 800 °C:
(+ -+ +) Marshall and Franck (1981) [Eq. (40)], 400°C; (—-—-—-—)
modified Marshall and Franck equation [Eq. (42)], 400 °C; (——) Model Il
[Eq. (39)], 400 °C (upper curve) and 800 °C (lower curve).

pKyw values estimated by the M&F formulation increase
more rapidly than the potentiometric results of Sweeton et al.
(1974), the conductivity data of Svistunov ef al. (1978), and
the calorimetric results of Chen er al. (1994b) (see Fig. 5).
The M&F formulation is also in contradiction with the the-
oretical results of Pitzer (1982) who came to the conclusion
that the M&F equation underestimates the true values of
pKy at low densities and overestimates it at very low (less
than 1072 gem™?) densities. According to the approach de-
veloped by Tanger and Pitzer (1989a, b), pKy should in-
crease more rapidly than M&F predicts at densities from 0.4
down to approximately 1073 gem ™3, and then it should in-
tersect the M&F curve, approaching the gas phase limiting
value. Our formulation approaches the same gas phase limit
as Pitzer’s model does (Fig. 8); however our formulation
generally remains under the M&F curve in the low-density
range. It is clear that both the additional experimental mea-
surements and theoretical studies are needed to provide a
correct description of pKy behavior in the low-density re-
gion.
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5. Appendix

According to the Bragg—Williams adsorption theory (Hill
1956; Lopatkin 1983) the occupation fraction obeys the fol-
lowing equations:

2(0)=0(1—6) "exp(wb/RT), (A1)
A~—“IS— 01 0+1 6)In(1 0+—w62
B=pr=n n;( )In( )2RT.
(A2)

To obtain the approximate expression for € we consider a
trial function as follows:

cosh[a(Inz+c)]
cosh[a(lnz+c—0b)]

1 1

@(Z):E'FMIH[ ], (A3)
where a, b, and ¢ are the parameters to be determined. This
function reproduces qualitatively the dependence of 6 from z
and has the true limiting values at Inz—*oc. Then, we as-
sume that quantitative agreement would be better if the fol-
lowing conditions are satisfied: (1) correct limiting behavior
of the derivative dA i/d1nz at z—o0; (2) correct value of z
at 6= 1/2; and (3) precise value of the derivative d6/JIn z at
0=1/2. To find the appropriate equations for parameters a,
b, and ¢ we should start with the general relation:

N IAT 98
dlnz 90 dlnz’

(A4)
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T T T T T
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FiG. 9. Bragg—Williams sorption isotherm, = 6(z), calculated using dif-
ferent values of w/RT=5 (left curves) and w/RT =30 (right curves): ( )
macroscopic approximation [Eq. (A1)], (- - - *) exact summation [Eq.
(A18)] for n=6, (O) our approximation [Eq. (A15)].

Then, by taking into account the original Bragg—Williams
sorption isotherm, we can write:

AR 1 +w0 A5
90 "\1=¢ " RT) (A5)
a0 [1 1 w7 A6
dne \0 1= RT (A6)
o6 =4+ o (A7)
dlnz 9— 15 RT ’
Inz(1/2)= w/2RT, (A8)
Y
R e )

For simplicity, let us introduce new quantities: x=a(Inz
+c), and y=a(Inz+c—>b). After substituting Eq. (A3) into
Egs. (A4)—(A6) we can get:

d0/d1nz=(tanh x —tanh y)/2b, (A10)
. dAR [ 1+0(1—=0)w/RT 0
fim Gy~ fim -0 Jlnz
01
) tanhx—tanhy
- Zhjr; 2ab—(lncoshx—lncoshy)}

 [sech? x—sech®y
=na lim|————

7—

tanh x —tanh y

= —na lim(tanh x+tanhy)=—2na. (All)

7—®
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FiG. 10. Excess chemical potential A & of the sorbent particle in the Bragg—
Williams approximation calculated using different values of w/RT=35 (left
curve) and w/RT=30 (right curve): (——) macroscopic approximation
[Egs. (A1) and (A2)], (- - - -) exact summation [Eq. (A17)] for n=6, (O)
our approximation [Egs. (A2) and (A15)].

Hence, taking into account Eq. (A9) we found that a=1/2.
The second condition expressed by Eq. (A8) will obviously
be satisfied if x=—y for z=exp(w/2RT), therefore

c+w2RT=b—c— w/2RT. (A12)

Further, it follows from the last two relations obtained and
from Eq. (A10) that

J0

= —tanh—.
dlnz tan

o=1n D 4
(A13)

Equating the right-hand sides of Eqs. (A7) and (A13) we
have:

1
=—(tanhx—tanhy)
o=1n 20

(4+ w/RT) " '=b""tanh(b/4). (A14)

For sufficiently large w, parameter b should be much greater
than unity, and consequently, tanh(b/4) becomes close to 1.
For example, if w/RT=4, b~7.66, and tanh(b/4)~0.96.
Practically, in the case of formation of an ion—molecular
complex, the value of w/RT has an order between 10 and 50
(Kebarle 1977). Therefore, assuming that w>5RT we may
put b=w/RT+4, and as a consequence, from Eq. (A12) we
can get the parameter ¢ being equal to 2.0. Using the re-
ceived values of a, b, and ¢ we obtain the desired expression
as

Inz
| | cosh 7—1—1
6:®(Z)=§+ © In an w
ﬁ+4 COSh(T—m—l)

(A15)
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In Fig. 9, we compare the developed approximation with a
numeric solution of Bragg—Williams macroscopic equations
[Egs. (A1) and (A2)] for two particular values of w: (1) 5RT
and (2) 30RT. Also, in this figure we show the results ob-
tained by the exact summation using the grand partition
function &, for n=6:

_ _é n! ; —i’w AL6
=& e P rr) M9
Af=-InE,, (A17)

s nli —i’w

= ittn—in © PlourT
0(z)= (A18)

=
n=,

All three curves are symmetrical with respect to the point
0=1/2, so we show only a half of the graphs. The exact and
approximate summations are proved to be very close to each
other. The stair-like shape is only slightly distinguishable for
the curve obtained using the direct summation [Eq. (A18)],
with a number of steps being equal to n. It is a remarkable
fact that the microscopic result for such a small value of n
(=6) becomes very close to the macroscopic approximation
which, strictly speaking, is only valid at n— 0. As illustrated
in Fig. 9, the proposed approximation well reproduces both
the macroscopic and exact result. In Fig. 10 we show the
relationship between Az and In z. It should be noted that this
result was obtained by substituting Eq. (A15) into Eq. (A2).
Referring to Fig. 10, the agreement between all three models
is excellent and, therefore, we have employed Eq. (A15) to-
gether with Eq. (A2) in our calculations of uj.
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